The structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores.

نویسندگان

  • Leila F Deravi
  • Andrew P Magyar
  • Sean P Sheehy
  • George R R Bell
  • Lydia M Mäthger
  • Stephen L Senft
  • Trevor J Wardill
  • William S Lane
  • Alan M Kuzirian
  • Roger T Hanlon
  • Evelyn L Hu
  • Kevin Kit Parker
چکیده

Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chromatophore when the pigment granules are distributed maximally: (i) pigment layers as thin as three granules that maintain optical effectiveness and (ii) the presence of high-refractive-index proteins-reflectin and crystallin-in granules. The latter discovery, combined with our finding that isolated chromatophore pigment granules fluoresce between 650 and 720 nm, refutes the prevailing hypothesis that cephalopod chromatophores are exclusively pigmentary organs composed solely of ommochromes. Perturbations to granular architecture alter optical properties, illustrating a role for nanostructure in the agile, optical responses of chromatophores. Our results suggest that cephalopod chromatophore pigment granules are more complex than homogeneous clusters of chromogenic pigments. They are luminescent protein nanostructures that facilitate the rapid and sophisticated changes exhibited in dermal pigmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approximate Analytic Model for Evaluating the Photonic Band Structure of a 2-D Octagonal Photonic Quasicrystals

In this work, using perturbation technique we have developed an approximate analytic model for evaluating the band structure of a 2-D octagonal photonic quasicrystal (PQC). Although numerical techniques are being used for evaluating such band structures, developing a numerical model to the best of our knowledge this work is the first instance of reporting helps to understand the physical proper...

متن کامل

Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...

متن کامل

Peripheral innervation patterns and central distribution of fin chromatophore motoneurons in the cuttlefish Sepia officinalis.

Body patterning behavior in unshelled cephalopod molluscs such as squid, octopuses, and cuttlefish is the ability of these animals to create complex patterns on their skin. This behavior is generated primarily by chromatophores, pigment-containing organs that are directly innervated by central motoneurons. The present study focuses on innervation patterns and location of chromatophore motoneuro...

متن کامل

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

متن کامل

Cuttlefish Algorithm – A Novel Bio-Inspired Optimization Algorithm

In this paper, a new meta-heuristic bio-inspired optimization algorithm, called Cuttlefish Algorithm (CFA) is presented. The algorithm mimics the mechanism of color changing behavior used by the cuttlefish to solve numerical global optimization problems. The patterns and colors seen in cuttlefish are produced by reflected light from different layers of cells including (chromatophores, leucophor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 93  شماره 

صفحات  -

تاریخ انتشار 2014